skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marrone, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
  2. Abstract We introduce a new Markov Chain Monte Carlo (MCMC) algorithm with parallel tempering for fitting theoretical models of horizon-scale images of black holes to the interferometric data from the Event Horizon Telescope (EHT). The algorithm implements forms of the noise distribution in the data that are accurate for all signal-to-noise ratios. In addition to being trivially parallelizable, the algorithm is optimized for high performance, achieving 1 million MCMC chain steps in under 20 s on a single processor. We use synthetic data for the 2017 EHT coverage of M87 that are generated based on analytic as well as General Relativistic Magnetohydrodynamic (GRMHD) model images to explore several potential sources of biases in fitting models to sparse interferometric data. We demonstrate that a very small number of data points that lie near salient features of the interferometric data exert disproportionate influence on the inferred model parameters. We also show that the preferred orientations of the EHT baselines introduce significant biases in the inference of the orientation of the model images. Finally, we discuss strategies that help identify the presence and severity of such biases in realistic applications. 
    more » « less
  3. Abstract We have observed thez= 4.3 protocluster SPT2349−56 with the Australia Telescope Compact Array (ATCA) with the aim of detecting radio-loud active galactic nuclei (AGNs) among the ∼30 submillimeter (submm) galaxies (SMGs) identified in the structure. We detect the central complex of submm sources at 2.2 GHz with a luminosity ofL2.2= (4.42 ± 0.56) × 1025W Hz−1. MeerKAT and the Australian Square Kilometre Array Pathfinder also detect the source at 816 MHz and 888 MHz, respectively, constraining the radio spectral index toα= −1.45 ± 0.16, implyingL1.4,rest= (2.2 ± 0.2) × 1026W Hz−1. The radio observations do not have sufficient spatial resolution to uniquely identify one of the three Atacama Large Millimeter/submillimeter Array (ALMA) galaxies as the AGN, however the ALMA source properties themselves suggest a likely host. This radio luminosity is ∼100× higher than expected from star formation, assuming the usual far-infrared–radio correlation, indicating an AGN driven by a forming brightest cluster galaxy. None of the SMGs in SPT2349−56 show signs of AGNs in any other diagnostics available to us, highlighting the radio continuum as a powerful probe of obscured AGNs. We compare these results to field samples of radio sources and SMGs, along with the 22 gravitationally lensed SPT-SMGs also observed in the ATCA program, as well as powerful radio galaxies at high redshifts. The (3.3 ± 0.7) × 1038W of power from the radio-loud AGN sustained over 100 Myr is comparable to the binding energy of the gas mass of the central halo, and similar to the instantaneous energy injection from supernova feedback from the SMGs in the core region. The SPT2349−56 radio-loud AGNs may be providing strong feedback on a nascent intracluster medium. 
    more » « less